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[Outline] Chapter 3: Contact resistance

Resistance scaling - general

▪ Contact resistance

▪ Quantum limit of resistance

▪ How to measure contact resistance

Contacts to 2D materials

▪ Contact geometries

▪ Contact resistance scaling

▪ Strategies for reducing the contact resistance
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Moore’s Law

Gordon Moore, co-founder of Intel stated in 1965:

“The number of transistors that can be inexpensively 
placed on an integrated circuit is increasing 
exponentially, doubling approximately every two 
years”

http://nobelprize.org/nobel_prizes/physics/laureates/2000/phyadv.pdf 3
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CMOS Scaling: Dennard Scaling (IBM)

If the dimensions, dopant concentrations and voltages are scaled as shown,  
according to simple electrostatics the electric field configuration will be exactly the 
same
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Contact resistance in practice

𝑉𝐷𝑆

𝑅𝐶𝐻𝑅𝐶1 𝑅𝐶2

𝑅𝐶𝐻 channel resistance
𝑅𝐶1, 𝑅𝐶2 individual contact resistances
𝑅𝑡𝑜𝑡 total resistance

  

  

  

  

 

 
                

                     

𝑅𝐶𝐻

𝑅𝑡𝑜𝑡

2𝑅𝐶

Allain et al., ACS Nano (2014)
𝑅𝑡𝑜𝑡 = 𝑅𝐶𝐻 + 𝑅𝐶1 + 𝑅𝐶2
𝑅𝑡𝑜𝑡 = 𝑅𝐶𝐻 + 2𝑅𝐶

𝑉𝐺𝑆

𝑉𝐷𝑆

𝐿

Scales with 𝐿
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Influence on FET characteristics
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How much contact resistance can we tolerate?

2𝑅𝐶 < 20% of 𝑅𝑡𝑜𝑡 ITRS 2012 requirement for low-standby-power SOI FETs

Allain…Bannerjee, Kis; Nature Materials (2015)
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How far can we go: quantum limit of resistance

For macroscopic (𝐿 ≫ 𝑙𝑚) conductors:

Ohm’s law 𝐼𝐷𝑆 =
𝑉𝐷𝑆
𝑅

Resistance 𝑅 = 𝜌
𝐿

𝑆

𝑙𝑚 elastic mean free path 
(1-10 nm for 2D semiconductors)

𝜌 resistivity
𝜌2𝐷 2D resistivity
𝐿 length
𝑆 cross-sectional area
𝑊 width
𝑅𝐶 contact resistance (on the order of kΩ)

𝑅 = 𝜌2𝐷
𝐿

𝑊

Resistance for a 2D material (no thickness):

Resistance scaling 𝐿 → 0 (𝐿 < 𝑙𝑚) :

lim
𝐿→0

𝑅 = 0 Mathematics

lim
𝐿→0

𝑅 = 𝑅𝐶 Reality

𝑉𝐺𝑆

𝑉𝐷𝑆

𝐿

There is a fundamental, quantum limit on how far the resistance can scale!
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Quantum resistance

As the dimensions decrease, resistance approaches a limiting value 𝑅𝐶

Origin: conductor and contact pads are dissimilar materials (with and without
quantum confinement)

𝑉 = 𝜇1 − 𝜇2
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𝐺0 =
2𝑒2

ℎ
= 7.75 × 10−5𝑆 =

= 12.9 𝑘Ω −1

𝐺0 conductance quantum
𝑒 elementary charge
ℎ Planck constant

Spin degeneracy



Example: carbon nanotube

Several milimeters long carbon nanotube, with multiple contacts

Purewal et al., PRL 98, 186808 (2007)
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Contact resistance measurements - 4 probe technique

1 4

2 3

Internal resistance of the voltmeter must be high so there is no current flowing through it: 
𝐼1 = 𝐼𝐶𝐻 = 𝐼4 = 𝐼

𝑅𝐶𝐻 =
𝑉23
𝐼

 

 

𝑉14

𝑅𝐶3
𝑅𝐶1 𝑅𝐶4

𝑅𝐶2
𝑅𝐶𝐻

𝐼4𝐼1

𝐼

𝑉23

𝐼𝐶𝐻

𝑅𝑡𝑜𝑡 =
𝑉14
𝐼

2𝑅𝐶 =
𝑉14 − 𝑉23

𝐼This is not a 4C device!
Invasive contacts!
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Contact resistance measurements – TLM

Transmission line measurements; 
transfer length method

𝑅𝑡𝑜𝑡 = 𝜌2𝐷
𝐿

𝑊
+ 2𝑅𝐶

Resistance for a 2D material w contacts:

𝐿1 𝐿2 𝐿3 𝐿4

𝑅𝑡𝑜𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

𝑓𝑖𝑡

𝐿1 𝐿2 𝐿3 𝐿4

𝑠𝑙𝑜𝑝𝑒 =
𝜌2𝐷
𝑊

2𝑅𝐶
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Contact resistance measurements – TLM

Transmission line measurements; 
transfer length method

Kappera et al., Nature Materials (2014)

𝐿1 𝐿2 𝐿3 𝐿4

𝑅𝑡𝑜𝑡 = 𝜌2𝐷
𝐿

𝑊
+ 2𝑅𝐶

Resistance for a 2D material w contacts:
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Contact geometry

Top  ontact

    aterial
 etal  etal

    aterial

 etal

   e  ontact

 etal
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Contact resistance scaling

Transmission line model, current crowding:

Allain…Bannerjee, Kis; Nature Materials (2015)

𝑅C = 𝜌2D𝑟C𝑐𝑜𝑡ℎ 𝑙 Τ𝜌2D 𝑟C 𝑅C = 𝜌2D𝑟C𝑓𝑜𝑟 𝑙 ≫ 𝐿T = 𝑟C/𝜌
2D :

Independent of 𝑙!

𝜌contact
2D SC resistivity under the contact

𝜌channel
2D SC resistivity in the channel

𝑟𝐶 resistivity of the SC/metal interface

𝐿T = 20 − 600 nm

Common assumption: 𝜌contact
2D = 𝜌channel

2D
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Experimental review

Allain…Bannerjee, Kis; Nature Materials (2015)

State of the art
𝑅𝐶 = 200 − 300 Ω ∙ μm

Theoretical limit
𝑅𝐶 = 30 Ω ∙ μm for

𝑛2𝐷 = 1013 𝑐𝑚−2
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Electrical contacts to 2D materials

Allain…Bannerjee, Kis; Nature Materials (2015)

Metal - 2D SC Contact

(with vdW Gap)

Metal - 2D SC Contact

(with Hybridization)
Metal – Bulk SC Contact
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2D Transition Metal Dichalcogenides (TMDCs)

▪ Common formula: 
MX2

▪ 40 stable materials

28

Semiconductors: MoS2 MoSe2 WS2 WSe2

MoTe2 WTe2

Semimetals: TiS2 TiSe2

Metals, CDW, 
superconductors:

NbSe2 NbS2 NbTe2

TaS2 TaSe2 TaTe2



Charge-injection mechanisms

Two mechanisms:

▪ Thermionic emission over the 
Schottky barrier

▪ Field emission (tunneling) through
the Schottky barrier

Allain…Bannerjee, Kis; Nature Materials (2015)

Metal - 2D SC Contact

(with Hybridization)
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Charge-injection mechanisms

Two mechanisms:

▪ Thermionic emission over the 
Schottky barrier

▪ Field emission (tunneling) over the 
Schottky barrier

Allain…Bannerjee, Kis; Nature Materials (2015)

Simpler extraction of the 
Shottky barrier height 𝑞𝜙𝐵0
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Schottky barrier height extraction

Procedure follows these points:

1. Identify contact with dominant barrier

2. Measure current, extract barrier height

3. Modify barrier height with gate voltage, extract 
Schottky barrier

One barrier each at source and drain:

▪ Back-to-back connected diodes

▪ Biasing curve can be linear

D. Lembke, PhD thesis (2015, EPFL)

𝑉𝐺𝑆

𝑉𝐷𝑆
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Schottky barrier height extraction

One barrier each at source and drain:

▪ Back-to-back connected diodes

▪ Biasing curve can be linear

▪ Most of the voltage drop occurs on 
the negatively biased diode (Point 1)

D. Lembke, PhD thesis (2015, EPFL) 32



Point 1: Schottky barrier height extraction

From the activation energy 𝐸𝐴 in the thermionic emission regime

Allain…Bannerjee, Kis; Nature Materials (2015)

𝑉𝐺𝑆

𝑉𝐷𝑆

𝐸𝐴 = 𝑞𝜙𝐵0 + 𝐸𝐶
∞ − 𝐸𝐶

0One barrier each at source and drain:

▪ Back-to-back connected diodes

▪ Biasing curve can be linear

▪ most of the drop occurs at the 
reverse-biased diode (source for n-
type FET) (Point 1: identify dominant 
contact)
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Point 2: Schottky barrier height extraction

Point 2: Assuming that most of the drop occurs at 
the reverse-biased diode (source for n-type FET), 
the injected current density is:

𝐽 = 𝐴∗𝑇𝛼 𝑒𝑥𝑝 −
𝑞𝜙𝐵0

𝑘𝐵𝑇
1 − 𝑒𝑥𝑝 −

𝑞𝑉𝐷𝑆
𝑘𝐵𝑇

𝐴∗ Richardson constant
𝜙𝐵0 Schottky barrier height
𝛼 2 for bulk SC, 3/2 for 2D

𝐽 = 𝐴∗𝑇𝛼 𝑒𝑥𝑝 −
𝑞𝜙𝐵0

𝑘𝐵𝑇

For 𝑞𝑉 ≫ 𝑘𝐵𝑇 (𝑘𝐵𝑇 ≈ 20 mV; OK until ~1000 K):

𝐽 = 𝐴 ∗ 𝑇𝛼 𝑒𝑥𝑝 −
𝐸𝐴
𝑘𝐵𝑇

In the sub-threshold regime (low 𝑉𝐺):

𝐸𝐴 = 𝑞𝜙𝐵0 + 𝐸𝐶
∞ − 𝐸𝐶

0

Difference between the conduction bands in the bulk 
(∞, far from the contact) and at the interface (0) 34



Point 3: Schottky barrier height extraction

Point 3: Extract 𝐸𝐴 as a function of 𝑉𝐺, identify flat 
band voltage 𝑉𝐹𝐵:

field emission contributes

Increasing 𝑉𝐺

(A)

(B)

(C)

(A)

(B)

(C)
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Schottky barrier height

Fermi level pinning

▪ Metal – 2D SC alloy

▪ Gap states because of weaker S - Mo bonding

▪ Choice of metals for contacts alone not the most suitable strategy for reducing 𝑅𝐶

Allain…Bannerjee, Kis; Nature Materials (2015)
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Strategies for reducing contact resistance

Several strategies appear promising:

▪ Phase engineering

▪ Doping

▪ Edge contacts 

▪ Direct transfer
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Phase engineering

2H phase of MoS2

semiconductor

1T phase
metallic

Kappera et al. Nature Materials (2014)

Heavy doping by Lithium can trigger a 
phase transition into a metallic phase

5 nm
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Phase engineering

Kappera et al. Nature Materials (2014)

𝑅𝐶 = 200 − 300 Ω ∙ μm
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Doping

Yang et al. Nano Letters (2014)

𝑅𝐶 ≈ 500 Ω ∙ μm

Cl doping by soaking the flakes in 
dichloroethane
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Edge contacts

Krasnozhon et al. IEDM (2015)

SF6 / O2 plasma etching
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Edge contacts

170 µA/µmPristine:

Imax = 370 µA/µm gm,max = 98 µS/µm

45 µS/µm
42



Direct transfer of contacts onto 2D materials

Liu et al. Nature (2018) 43



Direct transfer of contacts onto 2D materials

Liu et al. Nature (2018)
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Direct transfer of 2D materials onto 2D contacts

▪ MoTe2 or WTe2 contacts to MoS2

45Song et al. Nature Electronics (2020)

Fabrication

    

    

    

  
    

    

  

  

             
  

   

  
   

  
   

  
   

  
  

  
  

  
  

  
  

     

  

    

 

  

   

   

   

   

   

  
 
  
 
 
 

 
    

  
 

 
 

 
 
 



Quantum resistance

As the dimensions decrease, resistance approaches a limiting value 𝑅𝐶

Origin: conductor and contact pads are dissimilar materials (with and without
confinement)

𝑉 = 𝜇1 − 𝜇2
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Quantum resistance for a ballistic conductor

+𝑘 states: occupied only by electrons from 
contact 1

−𝑘 states: occupied only by electrons from 
contact 2

𝑉 = 𝜇1 − 𝜇2

𝐼 =
2𝑒2

ℎ
𝑀
𝜇1 − 𝜇2

𝑒
= 𝐺𝐶𝑉

𝑀 number of modes (subbands)

1

𝐺𝐶
= 𝑅𝐶 =

12.9 𝑘Ω

𝑀

𝐺𝐶 =
2𝑒2

ℎ
𝑀

Total current is carried by +𝑘 states 
between 𝜇1 and 𝜇2

2 from spin degeneracy

No scattering in the channel
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Quantized conductance: GaAs

Van Wees et al., PRB 43, 12431 (1991)

Van Wees et al., PRL 60, 848 (1988)

𝐺𝐶 =
2𝑒2

ℎ
𝑀

𝜆𝐹 = 100 nm
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Quantized conductance: graphene

Tombros, Wees, et al. Nat. Phys. (2011)
Terrés, Stampfer, et al. Nat. Comm. (2016)
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Quantized conductance: MoS2

 arinov…Kis; Nature  omms. ( 017)
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Quantized conductance: MoS2

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5
G

/G
0

 

-8.0 -7.5 -7.0 -6.5

Vtg (V)

Vbg = 93 V

Rs = 2.743 kΩ

400

300

200

100

0

C
o

n
d

u
c
ta

n
c
e

 G
 (
μ
S
)

-8 -6 -4 -2

Vtg (V)

Vbg = 93 V

B = 0 T

Steps of Τ𝑒2 ℎ : degeneracies lifted

51



When low 𝑹𝑪 is not good: spin injection

Conductivity mismatch problem

Schmidt, van Wees et al. PRB (2000)

Allain…Kis; Nat. Materials (2015)
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Permalloy Electrodes

Band alignement: Kan …Wu; Applie  Physics Letters ( 013)

PY work function: Wan …Xiu; Sci. Rep. (2014)
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Heterostructure LED with a Lateral FM Contact

Lopez Sanchez…Kis; Nano Lett. ( 016)
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Valley Polarization by Spin Injection
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Lopez Sanchez…Kis; Nano Lett. ( 016)
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Recapitulation

Resistance scaling - general

▪ Devices limited by contact resistance

▪ Quantum limit of resistance

▪ Contact resistance can be measured using 4-probe and TLM

Contacts to 2D materials

▪ Contact geometries – edge, top and combination

▪ Contact resistance scaling – transmission line model

▪ Almost all current examples in the literature fall short of ITRS requirements

▪ Schottky barrier extraction from the flat band condition

▪ Fermi level pinning

▪ Strategies for reducing contact resistance: phase engineering, doping, etching contacts, 
transfer of contacts

Origins of the quantum limit

▪ Ballistic charge injection

Spin injection into 2D materials

▪ Conductivity mismatch problem
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Thank you for your attention!
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